Search results for "LASER IONIZATION SPECTROSCOPY"

showing 5 items of 5 documents

Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…

FUNDAMENTAL PHYSICSGeneral Physics and Astronomychemistry.chemical_elementHYPERFINE STRUCTURE01 natural sciences7. Clean energyATOMIC SPECTROSCOPYLASER IONIZATION SPECTROSCOPYATOMSCOMPLEX ATOMIC SPECTRALaser coolingIonization0103 physical sciences010306 general physicsSpectroscopyNUMERICAL METHODSHyperfine structurePhysicsHYBRID APPROACHATOM LASERSActinideConfiguration interactionCOUPLED-CLUSTER METHODSACTINIUMMEDICAL ISOTOPE PRODUCTIONActiniumchemistryLASER COOLINGIONIZATIONProduction (computer science)Atomic physicsCONFIGURATION INTERACTIONS
researchProduct

Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

2017

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A…

Ion beamScienceGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticlelaw.inventionlawIonization0103 physical sciencesspectral resolutionNeutronSpectral resolution010306 general physicsSpectroscopyNuclear ExperimentPhysicsJet (fluid)Multidisciplinaryta114010308 nuclear & particles physicsQGeneral ChemistryLaserlaser ionization spectroscopyAtom laserexotic nucleisupersonic gas jetddc:500Atomic physics
researchProduct

Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

2017

The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam …

Nuclear and High Energy PhysicsCERN-MEDICISIon beamNuclear engineeringchemistry.chemical_element02 engineering and technology01 natural sciencesLASER IONIZATION SPECTROSCOPYIsotope separationlaw.invention010309 opticslawIonizationLUTETIUM0103 physical sciencesDetectors and Experimental TechniquesPhysical and Theoretical ChemistryLarge Hadron ColliderChemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserAtomic and Molecular Physics and OpticsIon sourceLutetiumRadionuclide therapyISOTOPE SEPARATIONAtomic physics0210 nano-technologyHyperfine Interactions
researchProduct

Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states

2017

Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nu- clear structure information. Here we demonstrate that by using weak atomic transitions, resonance laser ionization spectroscopy is achieved with the required high efficiency (1-10%) and precision (linewidths of tens of MHz). We illustrate experimentally and through the use of simulations how the narrow experimental linewidths are achieved and how distorted resonance ionization spec- troscopy lineshapes can be avoided. The role of the delay of the ionization laser pulse with respect to the excitat…

Physics - Instrumentation and DetectorsFOS: Physical sciencesHigh resolution01 natural sciencesResonance (particle physics)law.inventionlawIonization0103 physical sciencesPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear Experimentexcited statesPhysicsta114010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)resonance laser ionization spectroscopyLaser3. Good healthPulse (physics)exotic nucleiExcited stateAtomic physicsExcitation
researchProduct

Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states

2017

Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nuclear structure information. Here we demonstrate that by using weak atomic transitions, resonance laser ionization spectroscopy is achieved with the required high efficiency (1%–10%) and precision (linewidths of tens of MHz). We illustrate experimentally and through the use of simulations how the narrow experimental linewidths are achieved and how distorted resonance ionization spectroscopy line shapes can be avoided. The role of the delay of the ionization laser pulse with respect to the excitatio…

exotic nucleiPhysics::Atomic Physicsresonance laser ionization spectroscopyexcited states
researchProduct